Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
WoW
Talk
English
Views
Read
Edit
History
More
Search
Navigation
Home
Random page
Help using wiki
Editions
for WoW
for WildStar
for Solar2D
Documentation
for WoW
for WildStar
Reference
WoW
⦁ FrameXML
⦁ AddOns
⦁ API
⦁ WoW Lua
WildStar
⦁ AddOns
⦁ API
⦁ WildStar Lua
Engine
Tools
What links here
Related changes
Special pages
Page information
Site
Recent Changes
Editing
WoW:SetTexCoord Transformations
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==The math== ===Matrix multiplication=== Matrix multiplication is written as follows, for the expression b = Ta, where b is (X,Y,Z) and a is (x,y,z) you'd have; <math> \begin{pmatrix} X\\ Y\\ Z \end{pmatrix} = \begin{pmatrix} A&B&C\\ D&E&F\\ G&H&I \end{pmatrix} \times \begin{pmatrix} x\\ y\\ z \end{pmatrix} </math> Which is then calculated as follows: X = Ax + By + Cz Y = Dx + Ey + Fz Z = Gx + Hy + Iz ===Affine transformations as matrices=== You'll note my matrix example was a 3 dimensional coordinate, and a 3 by 3 matrix, this is because a 2 dimensional matrix isn't enough to represent an affine transformation by itself, because it cannot represent translation. The trick is to add a 'dummy' z coordinate, which ALWAYS has the value 1, and then use the following matrices: <math> \begin{pmatrix} X\\ Y\\ 1 \end{pmatrix} = \begin{pmatrix} A&B&C\\ D&E&F\\ 0&0&1 \end{pmatrix} \times \begin{pmatrix} x\\ y\\ 1 \end{pmatrix} </math> Which then yields: X = Ax + By + C Y = Dx + Ey + F 1 = 1 In this case, A,B,D,E represent scaling, shearing, and rotation, and C,F represent translation. Matrices of this form also multiply together properly, preserving the last row in the correct format. ===SetTexCoord math with matrices=== ====T as a matrix==== The first step in figuring out your SetTexCoord parameters is to represent your transformation as a matrix. This wont be covered here, but there are plenty of tutorials online concerning the mathematics of matrix transformations. You'll end up with a matrix with 6 variables, in the form shown above, and we'll use those for this example. ====Inverting T==== Not all matrices can be inverted, but for this case with the affine restricted 3x3 matrix, any matrix for which (AE-BD) is not zero has an inverse (This value is the 'determinant' of the matrix, and represents the change in area that a shape undergoes when transformed, you cannot reverse a matrix with a zero determinant because it represents a collapse into a single point or line) det = AE - BD x = ( EX - BY + (BF-CE)) / det y = (-DX + AY - (AF-CD)) / det Thus, if we were to make a new matrix for T' it'd be as follows {| |(||E/det||-B/det||(BF-CE)/det||) |- |(||-D/det||A/det||-(AF-CD)/det||) |- |(||0||0||1||) |} ====Final SetTexCoord results==== To calculate the final image coordinates, we apply T' to each of the corner Texture coordinates: UL Texture Coordinates (X,Y) = (0,0) ULx = ( BF - CE) / det ULy = (-AF + CD) / det LL Texture Coordinates (X,Y) = (0,1) LLx = (-B + BF - CE) / det = (-(1-F)B - CE) / det LLy = ( A - AF + CD) / det = ( (1-F)A + CD) / det UR Texture Coordinates (X,Y) = (1,0) URx = ( E + BF - CE) / det = ( BF + (1-C)E ) / det URy = (-D - AF + CD) / det = ( AF - (1-C)D ) / det LR Texture Coordinates (X,Y) = (1,1) LRx = ( E - B + BF - CE) / det = ( (1-C)E - (1-F)B ) / det LRy = (-D + A - AF + CD) / det = (-(1-C)D + (1-F)A ) / det ====Example function==== The function below will take a texture t, and a matrix with 6 variables as its arguments, and apply the transformation to the texture using the SetTexCoord calculations above. function setCoords(t, A, B, C, D, E, F) local det = A*E - B*D; local ULx, ULy, LLx, LLy, URx, URy, LRx, LRy; ULx, ULy = ( B*F - C*E ) / det, ( -(A*F) + C*D ) / det; LLx, LLy = ( -B + B*F - C*E ) / det, ( A - A*F + C*D ) / det; URx, URy = ( E + B*F - C*E ) / det, ( -D - A*F + C*D ) / det; LRx, LRy = ( E - B + B*F - C*E ) / det, ( -D + A -(A*F) + C*D ) / det; t:SetTexCoord(ULx, ULy, LLx, LLy, URx, URy, LRx, LRy); end Applying transformations is then rather simple. To apply a rotation to the texture, we can use the rotation matrix below (assuming angle a): {| |(||cos(a)||sin(a)||1||) |- |(||-sin(a)||cos(a)||1||) |} Applying a rotation of 90 degrees can then be done by using: local cos, sin = math.cos, math.sin; local angle = math.rad(90); setCoords(texture, cos(angle), sin(angle), 1, -sin(angle), cos(angle), 1); ===Simple rotation of square textures around the center=== While the above section about matrix manipulation gives a lot of flexibility, most often much simpler math suffice. Here's an example of rotating a square texture around its center with an arbitrary angle: local s2 = sqrt(2); local cos, sin, rad = math.cos, math.sin, math.rad; local function CalculateCorner(angle) local r = rad(angle); return 0.5 + cos(r) / s2, 0.5 + sin(r) / s2; end local function RotateTexture(texture, angle) local LRx, LRy = CalculateCorner(angle + 45); local LLx, LLy = CalculateCorner(angle + 135); local ULx, ULy = CalculateCorner(angle + 225); local URx, URy = CalculateCorner(angle - 45); texture:SetTexCoord(ULx, ULy, LLx, LLy, URx, URy, LRx, LRy); end ===Even simpler rotation of textures about the center=== function RotateTexture(self, degrees) local angle = math.rad(degrees) local cos, sin = math.cos(angle), math.sin(angle) self:SetTexCoord((sin - cos), -(cos + sin), -cos, -sin, sin, -cos, 0, 0) end ===Simple rotation of textures about their own center=== It may just have been a lack of understanding on my part but the above methods did not work for me; Or at least did not meet my needs. To be explicit, I wanted to be able to rotate a texture about its own center. In other words, I wanted the texture to spin in place, and not rotate or move the texture about the center of the UI, or its parent's center. The following code gives a rough idea of how to animate a texture to make it spin. But the basic method can be seen in the :SetTexCoord method : local angleInc = 0.25 function myOnUpdate(self, elapsed) self.timer = self.timer + elapsed; if ( self.timer > 0.05 ) then self.hAngle = self.hAngle - angleInc; self.s = sin(self.hAngle); self.c = cos(self.hAngle); miniNote:SetTexCoord( 0.5-self.s, 0.5+self.c, 0.5+self.c, 0.5+self.s, 0.5-self.c, 0.5-self.s, 0.5+self.s, 0.5-self.c); self.timer = 0; end end angleInc has been precalculated as a Radians value - the larger it is, the faster the spin. Or reduce the self.timer threshold to make a smoother rotation. radians = (pi/180) * degrees ===Rotation of textures about any point with any aspect=== This function caters to all your rotation needs. function RotateCoordPair (x,y,ox,oy,a,asp) y=y/asp oy=oy/asp return ox + (x-ox)*math.cos(a) - (y-oy)*math.sin(a), (oy + (y-oy)*math.cos(a) + (x-ox)*math.sin(a))*asp end And use it like this: coords={tl={x=0,y=0}, bl={x=0,y=1}, tr={x=1,y=0}, br={x=1,y=1}} origin={x=0.5,y=1.0} aspect=image_width/image_height angle=3.14159/2 texture:SetTexCoord( RotateCoordPair(coords.tl.x,coords.tl.y,origin.x,origin.y,angle,aspect), RotateCoordPair(coords.bl.x,coords.bl.y,origin.x,origin.y,angle,aspect), RotateCoordPair(coords.tr.x,coords.tr.y,origin.x,origin.y,angle,aspect), RotateCoordPair(coords.br.x,coords.br.y,origin.x,origin.y,angle,aspect) )
Summary:
Please note that all contributions to AddOn Studio are considered to be released under the Creative Commons Attribution-NonCommercial-ShareAlike (see
AddOn Studio Wiki:Copyrights
for details).
Submissions must be written by you, or copied from a public domain or similar free resource (see
AddOn Studio Wiki:Copyrights
for details).
Cancel
Editing help
(opens in new window)